MARY LENG (YORK)
Naturalism and Placement
NATURALISM AND PLACEMENT

MARY LENG
UNIVERSITY OF YORK

MONDAY, 25 APRIL 2016
17.30 - 19.15

THE WOBURN SUITE
SENATE HOUSE
UNIVERSITY OF LONDON
MALET STREET
LONDON WC1E 7HU
UNITED KINGDOM

This event is catered, free of charge & open to the general public

CONTACT
mail@aristoteliansociety.org.uk
www.aristoteliansociety.org.uk

© 2016 THE ARISTOTELIAN SOCIETY
Mary Leng is Senior Lecturer in Philosophy at the University of York. Prior to coming to York she held a Research Fellowship at St John's College, Cambridge, and a Lectureship at the University of Liverpool, as well as visiting positions at the University of British Columbia and the University of California at Irvine. She received her PhD in from the University of Toronto, and studied Mathematics and Philosophy as an undergraduate at Balliol College, Oxford. Although a naturalist in the Quinean tradition, she has argued against Quine that the naturalist approach to ontology does not support belief in the existence of mathematical objects. She is interested in the question of what a naturalist should say about other areas of discourse, particularly ethical discourse.

The following paper is a draft version that can only be cited or quoted with the author’s permission. The final paper will be published in Proceedings of the Aristotelian Society, Issue No. 3, Volume CXVI (2016). Please visit the Society’s website for subscription information: www.aristoteliansociety.org.uk.
Quinean naturalism, taken as the view that we should look to natural science as the ultimate ‘arbiter of truth’, leads rather quickly to what Huw Price (2011) has called, ‘placement problems’. Philosophers in the naturalist tradition have responded to the problem of placing mathematical and moral truth into our scientific worldview with three main strategies, which I call ‘RER-strategies’. An alternative strategy, of extending naturalistic respect to mathematical and moral discourse, is considered, and I argue that a proper understanding of the reasons Quine gives for privileging ‘natural science’ as authoritative when it comes to questions of truth and existence also apply to other stable and considered elements of our inherited worldview, including, arguably, our firmly held mathematical and moral beliefs.

WE USE THE PHRASES ‘there is’ and ‘there are’ with some profligacy: there are tables, chairs, beermugs; there are prime numbers greater than 100, and infinite numbers greater than any finite number; there are many ways the world could have been (and some ways it could never have been); there are plenty of good reasons not to torture cats… . We can think of the philosophical project of ontology is to adjudicate which (if any) of these ‘there is’ claims to take seriously, as genuinely committing us to objects of a particular kind. ‘Naturalism’, as an ontological proposal, offers an approach to making such adjudications, according to which we should take seriously those existence claims that are justified according by the lights of our best scientific understanding of the world around us. Some ordinary existence claims will be set aside when we apply this standard, as they are not vindicated by our most considered (scientific) efforts to describe and understand reality. Other more surprising existence claims that do not crop up in our folk ontology will be ruled in by this approach; perhaps we will discover a fundamental ontology of strings amongst the building blocks of reality.

The key idea behind naturalism, respect for the worldview identified by natural science, has been developed in different directions. Huw Price (2007) singles out two such developments, Eleatic and Quinean naturalism (sometimes referred to in the literature as ontological and methodological naturalism respectively). According to Eleatic naturalism, the world that natural science tells us of is a world of causes, so ‘we should believe in the existence of whatever figures in good causal explanations of observed phenomena, and our experiences and beliefs in general’ (Price,
Quinean naturalism, on the other hand, does not prejudge that the ontology vindicated by science is an ontology of causes. Quinean naturalism starts from a non-sceptical respect for the methods of the sciences wherever they may lead us – as Price (2007, p. 375) puts it, ‘the ontology we should accept is the ontology that turns out to be required by science’ but leaves it open that the requirements of science may go beyond an ontology of physical objects entering into causal relations.

On either understanding, though, naturalism’s focus on the worldview provided by the sciences and the ontology vindicated by that worldview means that many of our ordinary apparently ontological claims are hard to place. This is where the work for philosophical naturalists trying to adjudicate existence questions arises. As Price (2011, 6) puts it,

there is a striking mismatch between the rich world of ordinary discourse and the sparse world apparently described by science. A great deal of work in modern philosophy amounts to attempts to deal with some aspect or other of this mismatch. The project is often called simply naturalism.

Our talk of mathematics, of morals, of modality – all of these present us with what Price calls ‘placement problems’. ‘The problem’, Price (2011, 8) tells us, ‘is that of “placing” various kinds of truths in the natural world.’ Given what science tells us about our own cognitive apparatus and our ways of finding out about the world around us, some of the rich ontological claims of ordinary discourse look distinctly problematic, leading us to ask, but how could beings like us come to have reliably true beliefs about objects like that?

The 1970s saw classic statements of naturalistic placement problems in the philosophy of mathematics and in metaethics, due to Paul Benacerraf (1973) and J. L. Mackie (1977) respectively. Benacerraf focuses on mathematical truths and worries about how to square a standard account of mathematical truths with our best understanding of our cognitive capacities:

A typical “standard” account (at least in the case of number theory or set theory) will depict truth conditions in terms of conditions on objects whose nature, as normally conceived, places them beyond the reach of the better understood means of human cognition (e.g., sense perception and the like). (Benacerraf, 1973, p. 408)

If, for example, numbers are the kinds of entities they are normally taken to be, then the connection between the truth conditions for the statements of number theory and any relevant events connected with the people who are supposed to have mathematical knowledge cannot be made
out. It will be impossible to account for how anyone knows any properly number-theoretic propositions. (Benacerraf, 1973, p. 414)

…when we come to mathematics, the absence of a coherent account of how our mathematical intuition is connected with the truth of mathematical propositions renders the overall account unsatisfactory. (Benacerraf, 1973, p. 416)

Mackie’s ‘queerness’ worry about objective values presents parallel concerns with finding a place for these in the kind of world beings like ourselves could come to know about.

If there were objective values, then they would be entities or qualities or relations of a very strange sort, utterly different from anything else in the universe. Correspondingly, if we were aware of them, it would have to be by some special faculty of moral perception or intuition, utterly different from our ordinary ways of knowing everything else. (Mackie, 1977, p. 38)

When we ask the awkward question, how can we be aware of this authoritative prescriptivity, of the truth of these distinctively ethical premises or the cogency of this distinctively ethical pattern of reasoning, none of our ordinary accounts of sensory perception or introspection or the framing and confirming of explanatory hypotheses or inference or logical construction or conceptual analysis, or any combination of these, will provide a satisfactory answer; ‘a special sort of intuition’ is a lame answer, but it is the one to which the clear-headed objectivist is compelled to resort. (Mackie, 1977, pp. 38-9)

What, then, can we do when we have on the one hand a domain of prima facie true claims, but on the other hand no obvious way of placing these claims in the world of things accessible to us according to our best scientific understanding of ourselves and our cognitive capacities? What should a Quinean naturalist say about our apparent moral and mathematical knowledge?

Given a ‘problematic’ truth P, whose subject matter is not straightforwardly physicalistic, the problem is of placing that truth in a scientific setting S. Again following Price (2011), we can identify three standard naturalistic strategies in dealing with such placement problems, which I will refer to as ‘RER strategies’. When faced with the problem of fitting P into S, we could either:

1. Reduce P: show that P actually reduces to some unproblematic ‘natural’ scientific truth; or

2. Expand S: show that the methods of science actually vindicate
our belief in truths like P, even if it turns out that P requires an ontology that goes beyond the ontology of causes traditionally associated with the sciences (so that methodological naturalism requires us to reject ontological naturalism); or

3. Reject P: show that P, despite surface appearances, turns out not to be true after all.

In the case of mathematics, Philip Kitcher’s (1984) attempted reduction of claims about numbers to claims about our (idealized) collecting and segregating abilities may be the best worked out attempt to reduce the mathematical to the physical. In metaethics, Frank Jackson (1988) provides an example of an attempt to reduce moral properties to natural ones. In mathematics again, the influential Quine-Putnam indispensability argument for the existence of abstract mathematical objects (QPIA) is a naturalistic argument for the expansion of the recognised domain of natural science beyond the physical, arguing that our ordinary scientific standards of evidence vindicate belief in mathematical truths as well as physical ones. In metaethics David Enoch’s (2011) defence of robust meta-normative realism is modelled on the QPIA, with Enoch arguing that the role that normative talk plays for us can only be accounted for by adopting a robust realist conception of normative truths. In my own work in the philosophy of mathematics (Leng 2010) I have defended the fictionalist strategy of rejecting the face-value truth of mathematical claims. In metaethics, as Price points out, the rejection strategy has more variations beyond fictionalism – live options also include eliminativism and expressivism – but all join in rejecting the truth-at-face-value of moral claims, and thus the need to place these truths in our naturalistic worldview.

If we accept the naturalist’s project as one of looking for a place for what strike us as naturally problematic truths in the natural world, then RER strategies look to be the only way to proceed. But Price thinks that naturalists in the Quinean tradition are mistaken in accepting this placement project. Price’s reason for this stems from his understanding of the roots of Quinean naturalism in Carnap’s critique of traditional metaphysics (in ‘Empiricism, Semantics, Ontology’). In ESO, Carnap presents an account of theoretical frameworks which, he thinks, shows the folly of trying to ask, externally to any such framework, ‘but are its claims really true?’. According to Carnap (1950, p. 252),

If someone wishes to speak in his language about a new kind of entities, he has to introduce a system of new ways of speaking, subject to new rules; we shall call this procedure the construction of a linguistic frame-
work for the new entities in question.

Framework rules are linguistic conventions that give meaning to the terms introduced. They tell us in what circumstances it is appropriate to assert sentences within the given framework, either purely as a matter of logic or in conjunction with empirical input. Once a framework is adopted then we can ask (against the backdrop of the conventions adopted) internal questions as to which claims then become warranted (given framework rules and evidence). But, Carnap claims, if we try to ask substantial metaphysical claims about the real existence of the objects introduced by means of the framework, we are not asking internal questions (which are answered against the backdrop of the framework’s linguistic rules), but are rather trying to ask somehow about the ‘truth’ of the conventions themselves. But this kind of question, Carnap argues, is something we try in vain to ask ‘framework free’, and as such, he suspects, will lack any cognitive content.

Unless and until [philosophers engaged in the realism/anti-realism debate] supply a clear cognitive interpretation, we are justified in our suspicion that their question is a pseudo-question, that is, one disguised in the form of a theoretical question while in fact it is non-theoretical; in the present case it is the practical problem whether or not to incorporate into the language the new linguistic forms (Carnap 1950, p. 245).

All we can ask is whether such-and-such conventions are convenient to adopt in theorizing, not whether they are really true.

We can see how this is meant to go by looking at an example of a theoretical convention adopted in order to get theorizing going. In developing the special theory of relativity, Einstein starts with the assumption that the speed of light is constant in all frames, and on the basis of that proposes a definition of distant simultaneity: two spatially separated events are simultaneous in a given frame of reference if the light signals emitted from both reach an observer positioned at their midpoint together. Once this definition is in place we can synchronize clocks and only then can we measure time elapses (within a frame of reference) from one spatial point to another, and therefore determine facts about speed (distance travelled divided by time taken). As Einstein points out, this might strike one as circular, since we assumed the constancy of the speed of light in order to motivate our definition of simultaneity, and yet it is only once that definition is in place that we can go about measuring the speed of light. However, he argues, this circularity should not concern us as we do not need (and cannot get) empirical justification of our assumption of the constancy of the one-way speed of light; it is simply a stipulation we introduce in order to make measurements possible (and thus arrive at empirically testable
predictions downstream of that stipulation):

I maintain my previous definition nevertheless, because in reality it assumes absolutely nothing about light. There is only one demand to be made of the definition of simultaneity, namely, that in every real case it must supply us with an empirical decision as to whether or not the conception that has to be defined is fulfilled. That my definition satisfies this demand is indisputable. That light requires the same time to traverse the path \(A \rightarrow M \) as for the path \(B \rightarrow M \) is in reality neither a supposition nor a hypothesis about the physical nature of light, but a stipulation which I can make of my own freewill in order to arrive at a definition of simultaneity. (Einstein, 1920, p. 28)

There are, in Einstein’s view, no theory-independent facts of the matter about the one-way speed of light; all facts about speed are downstream of a conventional choice to adopt a particular definition of simultaneity. Similarly, Poincaré and Reichenbach argue that there are no theory-independent facts of the matter about the geometry of spacetime, but only facts that fall into place modulo conventional decisions about how to measure the sameness of length of distant objects (assuming that rigid measuring rods do not change size as we move about in space). In both cases, we can test empirical claims against the backdrop of our conventional choices about how to measure time and space, but we cannot test those conventions themselves, as there are no theory-independent standards of simultaneity or congruence to fall back on. We cannot ask, ‘Is the one-way speed of light really constant?’, or ‘Are objects measured with the standard metre really all the same length?’, even though we think we can imagine worlds where light signals move faster going East than West, or where everything systematically shrinks as we move away from some central point. For, according to this conventionalist view, claims about time and distance only make sense after we have made a decision about how to make our measurements, and once we’ve made those decisions the answers to these questions are trivial consequences of those decisions. All we can ask is whether a particular conventional choice strikes us as a useful way of getting going with theorizing.

Now Quine’s naturalist response to Carnap was meant to get us out of this predicament, by repudiating Carnap’s strong distinction between the conventions we start with in getting our theories going and the theoretical questions that we can ask and answer modulo those conventions. For, Quine argues, what is tested when we use our theories to describe reality is not individual claims, but the whole theoretical package. As such, the fact that an assumption is initially adopted as a convention to get theorizing going does not stop it from receiving empirical confirmation — that we have continued with a particular framework rather than dropping it
in favour of a more convenient alternative counts as vindication of that framework, ‘conventions’ and all, so that what started out as convention comes, through its continued presence in our best, reflective, theoretical worldview, as well confirmed as any empirical claim made ‘downstream’ of that convention. So while Quine agrees with Carnap that we’ve not made sense of traditional metaphysicians’ attempts to step outside of the theoretical frameworks given to us by science to ask whether they’re ‘really’ true, whether they really match reality, that doesn’t mean that there’s no philosophical project of ontology. Rather, the project is recast as the project of uncovering the ontological commitments that reside in our best confirmed, most considered, theoretical judgments: the frameworks that have proved their worth through their continued presence as part of our best efforts at understanding the world we find ourselves in.

Price’s attack on this apparent revival of substantial ontological questions (which proceeds by blurring the practical/theoretical divide, and presenting practical reasons to adopt frameworks in our best theories as reasons to believe the ontological claims licensed by those frameworks) is two-fold. First, Price holds, if we accept Quine’s point that there is no sharp practical/theoretical divide, there are two ways of reacting to this blurred boundary. While post-Quinean ontologists see this as good news for ontology, as it makes conventional decisions as empirical as anything else, Price notes that we could equally read this in the other direction as bad news, as recognising the element of practical convention in all of our theoretical claims, even those that seemed to us to be most empirical.

The main effect of abandoning the analytic-synthetic distinction is that Carnap’s distinctions are no longer sharp—there are no purely internal (nonpragmatic) issues, because linguistic rules are never absolute, and pragmatic restructuring is never entirely off the agenda. But a metaphysician who takes this as a vindication of his position—who announces triumphantly that Quine has shown us that metaphysics is in the same boat as natural science, that “ontological questions [are] on a par with the questions about natural science”—is someone who has not been told the terrible news. Quine himself has sunk the metaphysicians’ traditional boat, and left all of us, scientists and ontologists, clinging to Neurath’s Raft. (Price 2007, p. 393)

Secondly, Price holds, once we have recognised as Carnap does the possibility of multiple linguistic frameworks adopted for various practical purposes, the proper response is a pluralism about ontology: each framework will have its own internal ontology, some may be more practically useful to us than others, but none will be vindicated as ‘more true’ than any other. The Quinean naturalist who privileges natural science as answering ontological questions is, Price thinks, relying on a mistaken
view of natural science as uniquely representational – as really ‘matching’ reality – that Quine and Carnap both repudiated. But if we repudiate this representational picture of science, then Quine’s monist privileging of natural science as the arena in which ontological questions are answered loses, Price claims, any motivation. We’re left, then, with an ontological pluralism: each of many theoretical frameworks, which we may or may not choose to adopt for various practical purposes, brings with it its own ontology, and we have no reason to privilege any one of these as ‘the last arbiter of truth’ (Quine 1960, p. 23).

Now I don’t think that Price is right in his negative assessment of the extent to which Quine is able to resurrect a meaningful philosophical project of ontology from Carnap’s sceptical attack. But we will return to that issue later. Let us suppose for now that Price is right. The upshot of this, Price proposes, is that we should adopt ‘a kind of global expressivism’:

The right thing to do, as theorists, is not to say that it turns out that none of our statements are genuine representations; it is to stop talking about representation altogether, to abandon the project of theorising about word–world relations in these terms. (Price 2011, p. 12)

Price sees an advantage to this in recasting apparently intractable questions about the truthmakers of, e.g., moral claims as internal claims about the practices of moral assessment:

with Representationalism and that notion of truthmaking out of the picture, here – with all our semantic notions suitably deflated – we can ask “What makes it true that P?” with our gaze on other kinds of matters. We can ask “What makes it true that causing unnecessary harm to animals is wrong?”, for example, requesting some sort of moral explanation or elucidation, without feeling any of the Naturalists’ pressure to read this as an enquiry about the material world (or, for that matter, metaphysical pressure about some other kind of world). (Price 2011, p. 16)

If no discourse is properly thought of as representational, and if no discourse is privileged as the arena in which matters of truth are decided, then all we have is internal, framework-relative truth, and questions about the truth of claims of a discourse are then properly answered simply by appeal to the internal standards of justification for the relevant linguistic framework.

Despite this advantage of enabling us to set aside what seem to be intractable questions of the ‘external’ truthmakers for our talk about the mathematical or the moral, neo-Carnapian pluralism comes at a significant price. The problem is that, if all truth is internal truth, and if no discourse is privileged as the ultimate arbiter of truth and existence, then it is
hard to avoid the conclusion that any theoretical framework is as true as any other. Insofar as there are internal standards of assertibility within a discourse, then claims within that discourse will be true according to those standards, and any attempts to challenge the truth of such claims ‘from the outside’ must fail. When asked why we prefer astronomy to astrology; conventional medicine to homeopathy; the big bang to Greek tales of the titans, if our model is global expressivism, then it seems that all we can do is reiterate our preference.

In the context of the philosophy of mathematics, this problem has been pressed against Penelope Maddy’s (1997) attempt to extend naturalistic respect for the claims justified according to the internal frameworks standards of the natural sciences to claims justified according to internal mathematical standards. Maddy’s aim in that work is to deal with a problem that she sees as arising from the Quinean naturalist account of mathematics. Mathematics, though extremely useful to the natural sciences, has a large degree of autonomy from empirical sciences. Mathematicians develop their theories using mathematical standards of fruitfulness, without concern for whether the theories they develop are vindicated by the natural sciences. The Quinean view of mathematics can allow that mathematicians develop mathematical frameworks autonomously in this way, but then adds that it is only insofar as mathematics developed in this way becomes confirmed by its indispensable role in empirical science that it is confirmed as true. Thus, while most set theoreticians find axioms such as the axiom of constructibility, $V = L$, implausibly restrictive on the size of the set theoretic hierarchy, and look for alternative axioms that better fit their conception of the iterative hierarchy as having, at each successor level, sets containing all arbitrary combinations of sets from the previous level, Quine notes that $V = L$ is likely to be sufficient to serve the needs of science. As such, in Quine’s view, $V = L$ is confirmed by the use of mathematics in empirical science, and while mathematicians may choose to investigate the consequences of more generous set theoretic axioms, we should look upon their practice as ‘mathematical recreation … without ontological rights’ (Quine, 1986, p. 400). Taking it as absurd that the internal standards of justification within mathematics, which lead to a great deal of agreement on the rejection of $V = L$ in favour of more expansive axioms, should be overruled by the needs of empirical science, and in light of concerns about whether the role played by mathematics in empirical science could ever count as confirmation of the mathematics used, Maddy argues that we should respect mathematics as an autonomous domain with its own standards of justification, neither needing nor receiving ‘any justification beyond proof and the axiomatic method’ (Maddy, 1997, p. 184).
Maddy presents her proposal to allow mathematical truth and existence to be determined by the internal standards of the practice as in the spirit of Quinean naturalism:

To judge mathematical methods from any vantage-point outside mathematics, say from the vantage-point of physics, seems to me to run counter to the fundamental spirit that underlies all naturalism: the conviction that a successful enterprise, be it science or mathematics, should be understood and evaluated on its own terms, that such an enterprise should not be subject to criticism from, and does not stand in need of support from, some external supposedly higher point of view. (Maddy, 1997, p. 184)

But it is here that critics have noted the concern of a slide to a pluralistic approach to truth and existence of the sort Price proposes, that seems to make truth and existence just too cheap:

Unless there is something rather special about mathematics, the view suggests the application to the mathematical case of a general principle connecting ‘credibility’ with ‘acceptability given the aims of a practice’. Schematically, all we have is that when a certain practice P has a certain proximate goal G that is best served by including a statement S in the theory, then we automatically have all the reason we could want for believing that S is true. This may be plausible enough when P is set theory and S is Cantor’s theorem. But it is absurd as a general principle. The proximate goal of dogmatic theology may be to produce an account of God that coheres with scripture, Church tradition and the like. But it would be mad to insist without further argument that any reason to regard (say) the dogma of Christ’s divinity as acceptable given this goal counts automatically as a reason to believe that Christ is God. ‘Theological naturalism’ is a patent non-starter, so if mathematical naturalism is different there must be something special about mathematics.

We can give the problem a useful name. Say that a practice is authoritative if, whenever we have reason to accept a statement given the proximate goal of the practice we have reason to believe it is true. For Maddy, on the present interpretation, set theory and natural science are authoritative; but theology is not, or so we may assume. And the problem—the Authority Problem for Naturalized Epistemology—is to give some sort of principle for telling the authoritative practices from the rest. (Rosen 1999, p. 471)

Quine takes natural science as authoritative; Maddy proposes to extend the same respect to set theory. But in Price’s view, once we abandon the representationalist project of externally vindicating the internal existence claims of domains via their ‘matching’ how things really are, then it seems we must conclude that no practice is authoritative over any other. But then
no serious ontological project remains.

Before considering how Maddy and indeed Quinean naturalists can respond to this quietist attack on naturalistic ontology, I would like to consider how the problem appears again for another ontological proposal that has striking similarities to Maddy’s project in the philosophy of mathematics. In metaethics, T. M. Scanlon has argued for a realism about reasons that bypasses the traditional RER strategies in metaethics, moving instead to a self-consciously Carnap-inspired realism about the framework of practical reality. Scanlon takes it that there are some straightforward truths about our reasons to act. For example,

1. For a person in control of a fast moving automobile, the fact that the car will injure and perhaps kill a pedestrian if the wheel is not turned is a reason to turn the wheel.

2. The fact that a person’s child has died is a reason for that person to feel sad.

3. The fact that it would be enjoyable to listen to some very engaging music, moving one’s body gently in time with it, is a reason to do this, or to continue doing it. (Scanlon 2014, p. 3)

Furthermore, Scanlon takes it that our discourse about practical reasons enables us to refine our views about what reasons we have through a process of reflective equilibrium, which enables us to revise some of our intuitions about reasons in light of theoretic proposals, while still taking them as an important input in achieving an overall account. Normative discourse, Scanlon thinks, is respectable as a discourse in its own right, and not in need of ‘placing’ within a worldview sanctioned by empirical science. Thus, Scanlon proposes that

the way of thinking about these matters that makes most sense is a view that does not privilege science but takes as basic a range of domains, including mathematics, science, and moral and practical reasoning. It holds that statements within all of these domains are capable of truth and falsity, and at the truth values of statements of one domain, insofar as they do not conflict with statements of some other domain, are properly settled by the standards of the domain that they are about. Mathematical questions, including questions about the existence of numbers and sets are settled by mathematical reasoning, scientific questions, including questions about the existence of bosons, by scientific reasoning, normative questions by normative reasoning, and so on. (Scanlon, 2014, p. 19)

Scanlon’s picture fits rather neatly alongside Maddy’s extending of naturalistic respect to mathematics (and particularly set theory as foun-
dational within mathematics) as an autonomous domain with its own internal standards of truth and falsity. Indeed, Scanlon’s motivation for his reasons fundamentalism is an analogous picture about sets, which rejects Benacerrafian worries about external truth-makers for mathematical claims:

The question of whether set theory is “objectively true independently of us” is not a metaphysical question about whether sets are part of the world, but a question about whether the domain of sets can be characterized in such a way as to support the idea that every set-theoretic statement, or at least many set-theoretic statements, have definite truth values, whether or not we could ever carry out the reasoning required to determine what these truth values actually are. (Scanlon, 2014, p. 85)

This resonates with Maddy’s own recent development of her ‘thin realism’ about sets as in contrast with traditional Platonism (or what Maddy calls ‘Robust Realism’), according to which it is conceivable that set theoretic claims might be completely settled by internal set theoretic standards, and yet still not true (since not ‘matching’ set theoretic reality). Thus, according to Maddy’s ‘thin realist’, when asking about the truth value of an open question in set theory such as the continuum hypothesis (CH),

‘CH or not-CH’ is a theorem, established by her best methods as a fact about V; therefore CH is either true or false there. For the Robust Realist, this appeal to classical logic isn’t enough; for him, without a guarantee that the logic tracks the metaphysics, the possibility remains open that this theorem is incorrect. In contrast, the Thin Realist holds that set-theoretic methods are the reliable avenue to the facts about sets, that no external guarantee is necessary or possible. So the fundamental diagnostic is this: the Robust Realist requires a non-trivial account of the reliability of set-theoretic methods, an account that goes beyond what set theory tells us; for the Thin Realist, set theory itself gives the whole story; the reliability of its methods is a plain fact about what sets are. (Maddy, 2011, p. 63)

Turning to normative discourse, Scanlon holds that our discourse about reasons plays the analogous foundational role to sets. And while the process of reaching reflective equilibrium may have led to more stability in our discourse about sets than our discourse about practical reasons, for Scanlon this is a difference of degree rather than kind. To the extent that we have reached relatively stable shared conclusions about reasons, to that extent we should adopt a (metaphysically thin) realism along the lines of the proposed realism about sets:

there are central cases in which judgments about reasons seem clearly true. If we should reject these judgments, this has to be on the basis of substantive grounds for thinking them mistaken; not on the basis of
questions about how we could be in touch with such facts at all. General doubts of the latter kind would be relevant only if normative conclusions could have the significance they claim only if the facts they purport to represent had some special metaphysical character that would make them inaccessible to us. I see no more reason to believe this in the case of conclusions about practical reasons than in the case of truths about sets. (Scanlon, 2014, p. 86)

The neo-Carnapian message here is clear: the ‘representational’ paradigm fails for normative claims as it fails elsewhere; our standards for judging normative claims should be the substantive internal standards of the normative domain, not some misguided worry about whether these claims really match some independent reality. But given its neo-Carnapian roots, Scanlon’s picture faces the same ‘authority’ problem that we have seen with Maddy’s view (and that, in Price’s view, ultimately reduces all ontological questions to triviality). Unlike Price, Scanlon doesn’t think that, when it comes to truth and existence, ‘anything goes’, and that the internal claims of any framework are on a par. He says that the internal existence claims of domains are to be accepted insofar as they do not ‘have any presuppositions or implications that might conflict with those of other domains, such as science’ (Scanlon, 2014, p. 27). But Scanlon provides no reason for preferring science in the case of a conflict, or for adjudicating between domains other than science that conflict with one another (should we, for example, prefer the domain of numbers, or parities, both of which arise out of abstraction principles that are consistent with empirical facts but inconsistent with one another). And where there is no conflict, Scanlon’s position seems to force us to realism in a way that may be thought to undermine his realism about reasons.

This has been pressed most forcefully by robust metanormative realist David Enoch:

In the metanormative context, perhaps the most useful way of making this clear is by imagining another discourse (or perhaps another community engaging in it), what may be called the counter-normative discourse. The standards internal to the counter-normative domain license claims quantifying over counter-reasons. Those engaged in that discourse treat counter-reasons much as we treat reasons. For instance, they take them to be relevant to their practical deliberation, or perhaps counter-deliberation, in roughly the same way we take reasons to be relevant to ours: when they judge that there is a counter-reason to Φ, they tend to Φ, to criticize those who do not Φ, and so on. But their judgments about counter-reasons would sound very weird to us (once translated into reasons-talk). For instance, they think that it is rather obvious that that an action will cause the agent pain is counter-reason for performing it.
Do counter-reasons exist? I think that Scanlon is committed to an affirmative answer here. Quantifying over counter-reasons is licensed by the standards internal to the counter-normative domain. That domain is, we may safely assume, as consistent as our normative domain is. Furthermore, just as the normative domain is not in conflict with the empirical, scientific one (or so we here assume), neither is the counter-normative domain in such conflict. And this, after all, exhausts Scanlon’s criteria for existence. So counter-reasons, Scanlon seems committed to concluding, are as ontologically respectable as reasons are. Of course, they are not as normatively respectable as reasons are. And so those acting on them are to be criticized for not acting on the reasons that apply to them. But then again, reasons aren’t as counter-normatively respectable as counter-reasons are, and we may be counter-criticizable for failing to act on the counter-reasons that apply to us. (Enoch, 2011, p. 125)

For Scanlon, we reasoners can criticize counter-reasoners for not acting on reasons. The internal standards for reason-discourse have it that if we have a reason to Φ, then we should Φ (and certainly not ψ, where ψ is something that we have a counter-reason, but no reason, to do). But the same goes, mutatis mutandis, for the counter-reasoners. Faced with both practices, if we try to ask (externally to either’s normative outlook) ought we to act on reasons or counter-reasons, this external question seems to float framework-free, and as such starts to look like a Carnapian ‘pseudo-question’, lacking cognitive content. We cannot, it seems, normatively justify reasons over counter-reasons; all we can do is make our choice.

This is a bullet that Scanlon seems ready to bite. But need he? Our authority problem came from the lack of a principled reason to privilege science as, as Price (2007, p. 23) puts it, ‘the only ontologically-committing game in town’. Seeing other discourses with their own internal standards of assertibility, whose claims neither have nor seem to need justification as true from their role in natural science, we wonder whether to extend our naturalistic respect to mathematical and normative discourse respectively. But once we are no longer privileging natural science, we seem to be in the neo-Carnapian pluralist predicament of seeing all domains as on a par ontologically - and if all internal existence claims are vindicated, then none are. But is Price right that once we reject the ‘representationalist’ reason for privileging science, then all we can do is view all frameworks as ontologically on a par? Is Price right that there is no argument in Quine’s work for privileging ‘science’ over other domains, but only the spectre of a misplaced representationalism?

When we look at what Quine has to say about the naturalist’s predicament, it appears that Price is right that there’s very little there that justifies privileging natural science as the arbiter of truth and existence. But
that doesn’t mean that we can’t privilege some domains over others. For why does Quine privilege ‘science’? Not because of some argument about its superior methods that mean that it is better placed to uncover truths about reality than other domains with different methodologies. No, we trust ‘science’ simply because it’s all we have, the net result of our best communal efforts at organizing our experiences and understanding the world around us.

we do not break with the past, nor do we attain standards of evidence and reality different in kind from the vague standards of children and laymen. Science is not a substitute for common sense, but an extension of it. The quest for knowledge is properly an effort simply to broaden and deepen the knowledge which the man on the street already enjoys, in moderation, in relation to the commonplace things around him. (Quine 1957, p. 229)

‘Science’ is privileged here not because it stands out as a different kind of discourse, not because its methods are uniquely placed to produce an account that matches reality, but simply because of the historical fact that our current science has been reached by our best efforts at refining our beliefs in light of evidence – it is modern science, rather than Greek mythology, we appeal to in providing our most considered account of who we are and where we come from. But if that is what science stands for here, then perhaps Price is right that Quine hasn’t really provided us with an argument for privileging natural science as such. For, if Maddy and Scanlon are right about set theory and normative theory respectively, then our collective efforts to broaden and deepen the knowledge that we already enjoy, in moderation, concerning sets and reasons themselves give rise to autonomous discourses whose internal standards of reflection and criticism justify our beliefs in those areas, without need for any reduction or vindication from the natural sciences. Naturalism may then require that we trust our most considered and stable beliefs about sets or about reasons, simply because they too are the net results of our best collective efforts at refining the judgments of common sense.

In fact, if we look elsewhere in Quine’s discussions of the demands of naturalism, we see less about natural science as such and more about the naturalist requirement to work within our inherited worldview. Thus in Quine’s famous image,

The naturalistic philosopher begins his reasoning within the inherited world theory as a going concern. He tentatively believes all of it, but believes also that some unidentified portions are wrong. He tries to improve, clarify, and understand the system from within. He is the busy sailor adrift on Neurath’s boat. (Quine, 1981, p. 72)
A reading of naturalism as ‘scientism’ reads our ‘inherited world theory’ in this quote as ‘the account of the world provided by our best empirical science’. But if we take seriously Quine’s route to naturalism, based in his recognition of the impossibility of stepping outside our inherited worldview to ask the external question ‘but is it really true’, and his rehabilitation of practical reasons to adopt a way of speaking in our most considered attempts to describe and understand the world as theoretical reasons to believe that the world is as described, then it is hard to see how we could exempt from this any stable aspects of our inherited worldview that remain through our processes of refinement. And if this is the case, then our most stable mathematical and normative beliefs do have ‘something rather special’ about them that allows us to see them as authoritative in a way that Greek mythology and counternormative discourse are not. What is special is their history, and the fact that they have survived in our worldview through our collective best efforts at trying to determine what we ought to believe and how we ought to behave.

Quinean naturalism, when read as ‘scientism’, leads to placement problems. If we are justified in believing in all and only those claims that are justified as part of an empirical scientific worldview, then apparent truths that do not obviously fit nicely in with that worldview need to be found a place or discarded. Hence much effort both in the philosophy of mathematics and in metaethics has been expended on RER strategies that seek either to find a place for moral or mathematical truth within, as Blackburn (1998, p. 49) puts it, ‘the disenchanted, non-ethical order which we inhabit, and of which we are a part’ or to abandon those ‘truths’ as not really true at all. But if we take seriously the critique of traditional metaphysics on which Quine and Carnap were agreed, and take a closer look at the reasons why, in light of this critique, Quine’s naturalism holds that we are nevertheless entitled to believe the results of our best empirical scientific theorizing, we see that these very same reasons should apply also to the results of our best efforts at theorizing in other domains. If naturalism requires us to be nonskeptical about our inherited empirical scientific worldview, while working from within to improve and refine, then the same should go for other aspects of our conceptual inheritance. To the extent that they are present in our worldview as the result of reflection and refinement of prima facie truths, our stable and considered mathematical and normative beliefs are as warranted for us as the most considered claims of empirical science. We do not need to shoehorn mathematical and moral truths into the pushings and pullings of our empirical scientific worldview; for the busy sailor adrift on Neurath’s boat, mathematical and moral truths already have their place.
REFERENCES

Maddy, Penelope 2011: *Defending the Axioms*. Oxford: Clarendon Press

PRESIDENT: Susan James (Birkbeck)

PRESIDENT-ELECT: Tim Crane (Cambridge)

HONORARY DIRECTOR: Rory Madden (UCL)

EDITOR: Matthew Soteriou (Warwick)

LINES OF THOUGHT SERIES EDITOR: Scott Sturgeon (Oxford)

EXECUTIVE COMMITTEE: Corine Besson (Sussex) / Kimberley Brownlee (Warwick) / Rowan Cruft (Stirling) / Sacha Golob (KCL) / James Harris (St. Andrews) / Adrian Moore (Oxford) / Samir Okasha (Bristol) / Ulrike Heuer (Leeds)

MANAGING EDITOR: Hannah Carnegy (UCL)

ASSISTANT EDITOR: David Harris

DESIGNER: Mark Cortes Favis

ADMINISTRATOR: Josephine Salverda (UCL)